Showing 1 - 10 of 896
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011486511
We consider extreme value analysis in a semi-supervised setting, where we observe, next to the n data on the target variable, n +m data on one or more covariates. This is called the semi-supervised model with n labeled and m unlabeled data. By exploiting the tail dependence between the target...
Persistent link: https://www.econbiz.de/10013238314
Tail dependence models for distributions attracted to a max-stable law are fitted using observations above a high threshold. To cope with spatial, high-dimensional data, a rank based M-estimator is proposed relying on bivariate margins only. A data-driven weight matrix is used to minimize the...
Persistent link: https://www.econbiz.de/10013057537
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10013317404
We study estimation of the conditional tail average treatment effect (CTATE), defined as a difference between conditional tail expectations of potential outcomes. The CTATE can capture heterogeneity and deliver aggregated local information of treatment effects over different quantile levels, and...
Persistent link: https://www.econbiz.de/10013242439
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10012988566
Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r (x, z) = H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm...
Persistent link: https://www.econbiz.de/10012770898
This paper introduces the conditional likelihood estimator of relative risk (CLERR). The CLERR estimates the relative risk of an outcome analogously to the way the conditional logit estimates an odds ratio. Aside from the fact that relative risk is often the preferred measure of association, the...
Persistent link: https://www.econbiz.de/10012978236
The inefficiency term in stochastic frontier models is usually assumed to have positive skewness; but when this assumption is not met, efficiency scores are overestimated. Potential endogeneity of model regressors poses an additional empirical challenge and greatly hinders identification of...
Persistent link: https://www.econbiz.de/10014262754
This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast electricity price spreads between different hours of the day. This supports an optimal day ahead storage and discharge schedule, and thereby facilitates a bidding strategy for...
Persistent link: https://www.econbiz.de/10014107616