Showing 1 - 3 of 3
When the in-sample Sharpe ratio is obtained by optimizing over a k-dimensional parameter space, it is a biased estimator for what can be expected on unseen data (out-of-sample). We derive (1) an unbiased estimator adjusting for both sources of bias: noise fit and estimation error. We then show...
Persistent link: https://www.econbiz.de/10012902196
Persistent link: https://www.econbiz.de/10012262656
When optimizing the Sharpe ratio over a k-dimensional parameter space the thus obtained in-sample Sharpe ratio tends to be higher than what will be captured out-of-sample. For two reasons: the estimated parameter will be skewed towards the noise in the in-sample data (noise fitting) and, second,...
Persistent link: https://www.econbiz.de/10012998593