Showing 1 - 10 of 13
Persistent link: https://www.econbiz.de/10014364414
Persistent link: https://www.econbiz.de/10014339912
Inference using difference-in-differences with clustered data requires care. Previous research has shown that t tests based on a cluster-robust variance estimator (CRVE) severely over-reject when there are few treated clusters, that different variants of the wild cluster bootstrap can...
Persistent link: https://www.econbiz.de/10011428007
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelback, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011722260
When there are few treated clusters in a pure treatment or difference-in-differences setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-reject. Although procedures based on the wild cluster bootstrap often work well when the number of treated clusters is not...
Persistent link: https://www.econbiz.de/10011809450
Persistent link: https://www.econbiz.de/10012317779
Methods for cluster-robust inference are routinely used in economics and many other disciplines. However, it is only recently that theoretical foundations for the use of these methods in many empirically relevant situations have been developed. In this paper, we use these theoretical results to...
Persistent link: https://www.econbiz.de/10012494221
Persistent link: https://www.econbiz.de/10012499095
Persistent link: https://www.econbiz.de/10012483166
Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t-tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different variants of the wild cluster bootstrap can either...
Persistent link: https://www.econbiz.de/10011962945