Showing 1 - 10 of 26
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
Persistent link: https://www.econbiz.de/10011692431
Persistent link: https://www.econbiz.de/10003864191
Here we present an expository, general analysis of valid post-selection or post-regularization inference about a low-dimensional target parameter in the presence of a very high-dimensional nuisance parameter which is estimated using selection or regularization methods. Our analysis provides a...
Persistent link: https://www.econbiz.de/10011524714
Persistent link: https://www.econbiz.de/10011347397
Persistent link: https://www.econbiz.de/10011347403
Persistent link: https://www.econbiz.de/10011380852
In this note, we offer an approach to estimating structural parameters in the presence of many instruments and controls based on methods for estimating sparse high-dimensional models. We use these high-dimensional methods to select both which instruments and which control variables to use. The...
Persistent link: https://www.econbiz.de/10013029828
Here we present an expository, general analysis of valid post-selection or post-regularization inference about a low-dimensional target parameter, α, in the presence of a very high-dimensional nuisance parameter, η, which is estimated using modern selection or regularization methods. Our...
Persistent link: https://www.econbiz.de/10013027892
This paper studies a model widely used in the weak instruments literature and establishes admissibility of the weighted average power likelihood ratio tests recently derived by Andrews, Moreira, and Stock (2004). The class of tests covered by this admissibility result contains the Anderson and...
Persistent link: https://www.econbiz.de/10014026286