Showing 1 - 10 of 43
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10009126699
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the...
Persistent link: https://www.econbiz.de/10011386468
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10010325845
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10013146598
Persistent link: https://www.econbiz.de/10003973316
Persistent link: https://www.econbiz.de/10009355592
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
Persistent link: https://www.econbiz.de/10015073945
We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to outliers or jumps in the...
Persistent link: https://www.econbiz.de/10013117591
We propose a dynamic semi-parametric framework to study time variation in tail parameters. The framework builds on the Generalized Pareto Distribution (GPD) for modeling peaks over thresholds as in Extreme Value Theory, but casts the model in a conditional framework to allow for time-variation...
Persistent link: https://www.econbiz.de/10013243812