Showing 1 - 9 of 9
Persistent link: https://www.econbiz.de/10002396486
Persistent link: https://www.econbiz.de/10002459152
In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10014185810
Persistent link: https://www.econbiz.de/10009382185
Persistent link: https://www.econbiz.de/10010372659
In this paper we provide a unifed methodology in order to conduct likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space...
Persistent link: https://www.econbiz.de/10003866080
This paper studies a novel idea for constructing continuous-time stationary Markov models. The approach undertaken is based on a latent representation of the corresponding transition probabilities that conveys to appealing ways to study and simulate the dynamics of the constructed processes....
Persistent link: https://www.econbiz.de/10013152996
This paper is concerned with the construction of a continuous parameter sequence of random probability measures and its application for modeling random phenomena evolving in continuous time. At each time point we have a random probability measurewhich is generated by a Bayesian nonparametric...
Persistent link: https://www.econbiz.de/10013153001
Persistent link: https://www.econbiz.de/10013367927