Showing 1 - 10 of 24
We present the regression-based Monte Carlo simulation algorithms for solving the stochastic control models associated with pricing and hedging of the Guaranteed Lifelong Withdrawal Benefit (GLWB) in variable annuities, where the dynamics of the underlying fund value is assumed to evolve...
Persistent link: https://www.econbiz.de/10013006135
This paper presents the willow tree algorithms for pricing variable annuities with Guaranteed Minimum Withdrawal Benefits (GMWB), where the underlying fund dynamics evolve under the Merton jump-diffusion process or constant-elasticity-of-variance (CEV) process. The GMWB rider gives the...
Persistent link: https://www.econbiz.de/10012898983
Exact simulation schemes under the Heston stochastic volatility model (e.g., Broadie-Kaya and Glasserman-Kim) suffer from computationally expensive Bessel function evaluations. We propose a new exact simulation scheme without the Bessel function, based on the observation that the conditional...
Persistent link: https://www.econbiz.de/10014239004
Persistent link: https://www.econbiz.de/10010508080
Persistent link: https://www.econbiz.de/10003769016
Persistent link: https://www.econbiz.de/10011455019
Persistent link: https://www.econbiz.de/10011308159
Persistent link: https://www.econbiz.de/10011342182
Persistent link: https://www.econbiz.de/10011404362
We consider the stochastic control model with finite time horizon for a mixed duopoly R&D (Research and Development) race between the profit-maximizing private firm and welfare maximizing public firm. In our two-firm stochastic control R&D race model, the stochastic control variable is taken to...
Persistent link: https://www.econbiz.de/10013050977