Showing 1 - 10 of 680
This paper is concerned with simulation based inference in generalized models of stochastic volatility defined by heavy-tailed student-t distributions (with unknown degrees of freedom) and covariate effects in the observation and volatility equations and a jump component in the observation...
Persistent link: https://www.econbiz.de/10014142429
In this paper we solve the discrete time mean-variance hedging problem when asset returns follow a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are well established properties of financial time series and our model covers both. To illustrate...
Persistent link: https://www.econbiz.de/10012953054
We are comparing two approaches for stochastic volatility and jumps estimation in the EUR/USD time series - the non-parametric power-variation approach using high-frequency returns, and the parametric Bayesian approach (MCMC estimation of SVJD models) using daily returns. We find that both of...
Persistent link: https://www.econbiz.de/10013030080
We put forward two jump-robust estimators of integrated volatility, namely realized information variation (RIV) and realized information power variation (RIPV). The "information" here refers to the difference between two-grid of ranges in high-frequency intervals, which preserves continuous...
Persistent link: https://www.econbiz.de/10012986881
Econometric estimation using simulation techniques, such as the efficient method of moments, may betime consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus will very often cause extra delay. For the Efficient Method of Moments implemented to...
Persistent link: https://www.econbiz.de/10010533201
Particle Filter algorithms for filtering latent states (volatility and jumps) of Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three versions of the SIR particle filter with adapted proposal distributions to the jump occurrences, jump sizes, and both are derived and...
Persistent link: https://www.econbiz.de/10012118579
We define a non-parametric estimator of the integrated leverage effect as the covariance between the logarithmic asset price and its volatility. In Curato and Sanfelici (2015), a consistent estimator of the leverage effect has been introduced through a pre-estimate of the Fourier coefficients of...
Persistent link: https://www.econbiz.de/10012937229
In this paper, we consider alternative approaches to the estimation of Itˆo diffusion processes from discretely sampled observations. Based on Monte Carlo simulation, we investigate the finite sample properties of various estimators and in particular compare the performance of the nonparametric...
Persistent link: https://www.econbiz.de/10014165114
Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with...
Persistent link: https://www.econbiz.de/10014166285
Kriging provides metamodels for deterministic and random simulation models. Actually, there are several types of Kriging; the classic type is so-called universal Kriging, which includes ordinary Kriging. These classic types require estimation of the trend in the input-output data of the...
Persistent link: https://www.econbiz.de/10014142481