Showing 1 - 10 of 2,133
In this study, I investigate the necessary condition for consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally...
Persistent link: https://www.econbiz.de/10014157525
In this study, I investigate the necessary condition for the consistency of the maximum likelihood estimator (MLE) of spatial models with a spatial moving average process in the disturbance term. I show that the MLE of spatial autoregressive and spatial moving average parameters is generally...
Persistent link: https://www.econbiz.de/10011290741
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to a spatial autoregressive model that has a spatial moving average process in the disturbance term (for short SARMA (1,1)). First, we...
Persistent link: https://www.econbiz.de/10012974451
In this paper, we introduce the one-step generalized method of moments (GMM) estimation methods considered in Lee (2007a) and Liu, Lee, and Bollinger (2010) to spatial models that impose a spatial moving average process for the disturbance term. First, we determine the set of best linear and...
Persistent link: https://www.econbiz.de/10014145971
We study inference for threshold regression in the context of a large panel factor model with common stochastic trends. We develop a Least Squares estimator for the threshold level, deriving almost sure rates of convergence and proposing a novel, testing based, way of constructing confidence...
Persistent link: https://www.econbiz.de/10014082424
We explore the performance of mixed-frequency predictive regressions for stock returns from the perspective of a Bayesian investor. We develop a constrained parameter learning approach for sequential estimation allowing for belief revisions. Empirically, we find that mixed-frequency models...
Persistent link: https://www.econbiz.de/10014348997
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011524214
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011823308
This paper introduces a representation of an integrated vectortime series in which the coefficient of multiple correlation computed fromthe long-run covariance matrix of the innovation sequences is a primitiveparameter of the model. Based on this representation, a notion of nearcointegration is...
Persistent link: https://www.econbiz.de/10011300555