Showing 1 - 10 of 19,194
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation,...
Persistent link: https://www.econbiz.de/10011568279
Markov chain Monte Carlo (MCMC) methods have an important role in solving high dimensionality stochastic problems characterized by computational complexity. Given their critical importance, there is need for network and security risk management research to relate the MCMC quantitative...
Persistent link: https://www.econbiz.de/10013029835
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
The so-called leverage hypothesis is that negative shocks to prices/ returns affect volatility more than equal positive shocks. Whether this is attributable to changing financial leverage is still subject to dispute but the terminology is in wide use. There are many tests of the leverage...
Persistent link: https://www.econbiz.de/10009759803
Particle Filter algorithms for filtering latent states (volatility and jumps) of Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three versions of the SIR particle filter with adapted proposal distributions to the jump occurrences, jump sizes, and both are derived and...
Persistent link: https://www.econbiz.de/10012118579
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance - but still mean reverting - behavior is commonly found with nonparametric estimates of the fractional...
Persistent link: https://www.econbiz.de/10011382237
A Lévy process is observed at time points of distance delta until time T. We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and delta. Thereby, we encompass the usual low- and high-frequency assumptions...
Persistent link: https://www.econbiz.de/10009125540
Semi-parametric estimators for non-Gaussian GARCH processes based on Feasible Weighted Least Squares (FWLS) are proposed. The estimators are consistent and do not require the specification of the innovations distribution family. The FWLS estimators incorporate information related to the skewness...
Persistent link: https://www.econbiz.de/10012978175
We are comparing two approaches for stochastic volatility and jumps estimation in the EUR/USD time series - the non-parametric power-variation approach using high-frequency returns, and the parametric Bayesian approach (MCMC estimation of SVJD models) using daily returns. We find that both of...
Persistent link: https://www.econbiz.de/10013030080
We put forward two jump-robust estimators of integrated volatility, namely realized information variation (RIV) and realized information power variation (RIPV). The "information" here refers to the difference between two-grid of ranges in high-frequency intervals, which preserves continuous...
Persistent link: https://www.econbiz.de/10012986881