Showing 1 - 10 of 1,130
We introduce a new method to price American-style options on underlying investments governed by stochastic volatility (SV) models. The method does not require the volatility process to be observed. Instead, it exploits the fact that the optimal decision functions in the corresponding dynamic...
Persistent link: https://www.econbiz.de/10013078765
Based on the fact that realized measures of volatility are affected by measurement errors, we introduce a new family of discrete-time stochastic volatility models having two measurement equations relating both observed returns and realized measures to the latent conditional variance. A...
Persistent link: https://www.econbiz.de/10012903114
In this article, the Universal Approximation Theorem of Artificial Neural Networks (ANNs) is applied to the SABR stochastic volatility model in order to construct highly efficient representations. Initially, the SABR approximation of Hagan et al. [2002] is considered, then a more accurate...
Persistent link: https://www.econbiz.de/10012907596
We present an embarrassingly simple method for supervised learning of SABR model's European option price function based on lookup table or rote machine learning. Performance in time domain is comparable to generally used analytic approximations utilized in financial industry. However, unlike the...
Persistent link: https://www.econbiz.de/10012835457
This paper investigates the relationship between volatility and liquidity on the German electricity futures market based on high-frequency intraday prices. We estimate volatility by the time-weighted realized variance acknowledging that empirical intraday prices are not equally spaced in time....
Persistent link: https://www.econbiz.de/10012848990
Maximum likelihood estimation (MLE) of stochastic differential equations (SDEs) is difficult because in general the transition density function of these processes is not known in closed form, and has to be approximated somehow. An approximation based on efficient importance sampling (EIS) is...
Persistent link: https://www.econbiz.de/10014183458
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
This essay is aimed to provide a straightforward and sufficiently accessible demonstration of some known procedures for stochastic volatility model. It reviews the important related concepts, gives informal derivations of the methods and can be useful as a cookbook for a novice. The exposition...
Persistent link: https://www.econbiz.de/10013137668
A new version of the local scale model of Shephard (1994) is presented. Its features are identically distributed evolution equation disturbances, the incorporation of in-the-mean effects, and the incorporation of variance regressors. A Bayesian posterior simulator and a new simulation smoother...
Persistent link: https://www.econbiz.de/10013120871
Econometric estimation using simulation techniques, such as the efficient method of moments, may betime consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus will very often cause extra delay. For the Efficient Method of Moments implemented to...
Persistent link: https://www.econbiz.de/10010533201