Showing 1 - 10 of 2,072
We document five novel empirical findings on the well-known potential ordering drawback associated with the time-varying parameter vector autoregression with stochastic volatility developed by Cogley and Sargent (2005) and Primiceri (2005), CSP-SV. First, the ordering does not affect point...
Persistent link: https://www.econbiz.de/10014048674
This paper develops and illustrates a simple method to generate a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to...
Persistent link: https://www.econbiz.de/10014214672
ARFIMAX models are applied in estimating the intra-day realized volatility of the CAC40 and DAX30 indices. Volatility clustering and asymmetry characterize the logarithmic realized volatility of both indices. ARFIMAX model with time-varying conditional heteroscedasticity is the best performing...
Persistent link: https://www.econbiz.de/10012910127
Our research project analyses the suitability of social responsible investments (SRI) and alternative asset classes (in particular commodities, hedge fund in-vestments, high-yield bonds) for the portfolio management of German Pension Insurance Funds (Pensionskassen), the largest external...
Persistent link: https://www.econbiz.de/10013120648
We consider unobserved components time series models where the components are stochastically evolving over time and are subject to stochastic volatility. It enables the disentanglement of dynamic structures in both the mean and the variance of the observed time series. We develop a simulated...
Persistent link: https://www.econbiz.de/10012924242
Various parametric volatility models for financial data have been developed to incorporate high-frequency realized volatilities and better capture market dynamics. However, because high-frequency trading data are not available during the close-to-open period, the volatility models often ignore...
Persistent link: https://www.econbiz.de/10013245227
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010259630
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR. To keep our approach from becoming too complex, we implement time variation parsimoniously: only the intercepts and a common...
Persistent link: https://www.econbiz.de/10011903709
The multivariate analysis of a panel of economic and financial time series with mixed frequencies is a challenging problem. The standard solution is to analyze the mix of monthly and quarterly time series jointly by means of a multivariate dynamic model with a monthly time index: artificial...
Persistent link: https://www.econbiz.de/10010391543