Showing 1 - 10 of 28
Persistent link: https://www.econbiz.de/10000982152
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10010296235
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10010296258
We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure approximates necessary integrals using continuous approximations of target densities. Construction is achieved via efficient...
Persistent link: https://www.econbiz.de/10010298827
Most of the empirical applications of the stochatic volatility (SV) model are based on the assumption that the conditional distribution of returns given the latent volatility process is normal. In this paper the SV model based on a conditional normal distribution is compa-red with SV...
Persistent link: https://www.econbiz.de/10010435553
Persistent link: https://www.econbiz.de/10001474643
Persistent link: https://www.econbiz.de/10001782293
Persistent link: https://www.econbiz.de/10000642314
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355