Showing 1 - 10 of 11
We consider time series forecasting in the presence of ongoing structural change where both the time-series dependence and the nature of the structural change are unknown. Methods that downweight older data, such as rolling regressions, forecast averaging over different windows and exponentially...
Persistent link: https://www.econbiz.de/10013055932
This paper explores a semiparametric version of a time-varying regression, where a subset of the regressors have a fixed coefficient and the rest a time-varying one. We provide an estimation method and establish associated theoretical properties of the estimates and standard errors in extended...
Persistent link: https://www.econbiz.de/10015192982
We consider time series forecasting in the presence of ongoing structural change where both the time series dependence and the nature of the structural change are unknown. Methods that downweight older data, such as rolling regressions, forecast averaging over different windows and exponentially...
Persistent link: https://www.econbiz.de/10009510653
Persistent link: https://www.econbiz.de/10010356917
Persistent link: https://www.econbiz.de/10010490087
In this paper we introduce the general setting of a multivariate time series autoregressive model with stochastic time-varying coefficients and time-varying conditional variance of the error process. This allows modeling VAR dynamics for non-stationary times series and estimation of time varying...
Persistent link: https://www.econbiz.de/10011405250
Following Giraitis, Kapetanios, and Yates (2014b), this paper uses kernel methods to estimate a seven variable time-varying (TV) vector autoregressive (VAR) model on the data set constructed by Smets and Wouters (2007). We apply an indirect inference method to map from this TV VAR to time...
Persistent link: https://www.econbiz.de/10011405253
This paper introduces and analyses a setting with general heterogeneity in regression modelling. It shows that regression models with fixed or time-varying parameters can be estimated by OLS or time-varying OLS methods, respectively, for a very wide class of regressors and noises, not covered by...
Persistent link: https://www.econbiz.de/10015095127
We consider time series forecasting in the presence of ongoing structural change where both the time series dependence and the nature of the structural change are unknown. Methods that downweight older data, such as rolling regressions, forecast averaging over different windows and exponentially...
Persistent link: https://www.econbiz.de/10014171513
In this paper we introduce the general setting of a multivariate time series autoregressive model with stochastic time-varying coefficients and time-varying conditional variance of the error process. This allows modeling VAR dynamics for non-stationary times series and estimation of time varying...
Persistent link: https://www.econbiz.de/10011460774