Showing 1 - 10 of 29
Many methods of computational statistics lead to matrix-algebra or numerical- mathematics problems. For example, the least squares method in linear regression reduces to solving a system of linear equations. The principal components method is based on finding eigenvalues and eigenvectors of a...
Persistent link: https://www.econbiz.de/10003024181
Persistent link: https://www.econbiz.de/10001646219
Persistent link: https://www.econbiz.de/10009581094
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10010274136
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010296438
Persistent link: https://www.econbiz.de/10001508460
Persistent link: https://www.econbiz.de/10001425143
Persistent link: https://www.econbiz.de/10001595492
Persistent link: https://www.econbiz.de/10001743569
Persistent link: https://www.econbiz.de/10001751576