Showing 1 - 10 of 149
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10013115490
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10009308298
Persistent link: https://www.econbiz.de/10010233604
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed on high frequencies, such as cumulated trading volumes or the time between potentially...
Persistent link: https://www.econbiz.de/10008749839
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed on high frequencies, such as cumulated trading volumes or the time between potentially...
Persistent link: https://www.econbiz.de/10008748137
Model diagnostics and forecast evaluation are closely related tasks, with the former concerning in-sample goodness (or lack) of fit and the latter addressing predictive performance out-of-sample. We review the ubiquitous setting in which forecasts are cast in the form of quantiles or...
Persistent link: https://www.econbiz.de/10014259515
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10003952845
This article studies nonparametric estimation of a regression model for d ≥ 2 potentially non-stationary regressors. It provides the first nonparametric procedure for a wide and important range of practical problems, for which there has been no applicable nonparametric estimation technique...
Persistent link: https://www.econbiz.de/10009379521
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
We introduce a new method for dynamic clustering of panel data with dynamics for cluster location and shape, cluster composition, and for the number of clusters. Whereas current techniques typically result in (economically) too many switches, our method results in economically more meaningful...
Persistent link: https://www.econbiz.de/10013228402