Showing 1 - 10 of 120
In this work we consider series estimators for the conditional mean in light of three new ingredients: (i) sharp LLNs for matrices derived from the non-commutative Khinchin inequalities, (ii) bounds on the Lebesgue factor that controls the ratio between the L8 and L2-norms, and (iii) maximal...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010227484
We derive a Gaussian approximation result for the maximum of a sum of high dimensional random vectors. Specifically, we establish conditions under which the distribution of the maximum is approximated by that of the maximum of a sum of the Gaussian random vectors with the same covariance...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010227470
We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the supremum norm. We prove an abstract approximation theorem that is applicable to a...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010227479
Slepian and Sudakov-Fernique type inequalities, which com- pare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010227495
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are a variety of economic applications where the problem of testing many moment in- equalities appears; a notable...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010459258
We derive strong approximations to the supremum of the non-centered empirical process indexed by a possibly unbounded VC-type class of functions by the suprema of the Gaussian and bootstrap processes. The bounds of these approximations are non-asymptotic, which allows us to work with classes of...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011524717
Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011525793
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are variety of economic applications where the problem of testing many moment in- equalities appears; a notable...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011525823
This article reviews recent progress in high-dimensional bootstrap. We first review high-dimensional central limit theorems for distributions of sample mean vectors over the rectangles, bootstrap consistency results in high dimensions, and key techniques used to establish those results. We then...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10014259420
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10013160364