Showing 1 - 10 of 205
The paper develops a general Bayesian framework for robust linear static panel data models using ε-contamination. A two-step approach is employed to derive the conditional type-II maximum likelihood (ML-II) posterior distribution of the coeffcients and individual effects. The ML-II posterior...
Persistent link: https://www.econbiz.de/10012919765
Persistent link: https://www.econbiz.de/10011411477
This paper extends the Baltagi et al. (2018, 2021) static and dynamic ?-contamination papers to dynamic space-time models. We investigate the robustness of Bayesian panel data models to possible misspecification of the prior distribution. The proposed robust Bayesian approach departs from the...
Persistent link: https://www.econbiz.de/10014264204
The paper develops a general Bayesian framework for robust linear static panel data models using ε-contamination. A two-step approach is employed to derive the conditional type-II maximum likelihood (ML-II) posterior distribution of the coefficients and individual effects. The ML-II posterior...
Persistent link: https://www.econbiz.de/10013042986
Persistent link: https://www.econbiz.de/10001798190
Persistent link: https://www.econbiz.de/10002655589
Persistent link: https://www.econbiz.de/10001863314
Persistent link: https://www.econbiz.de/10001916245
This paper proposes maximum likelihood estimators for panel seemingly unrelated regressions with both spatial lag and spatial error components. We study the general case where spatial effects are incorporated via spatial errors terms and via a spatial lag dependent variable and where the...
Persistent link: https://www.econbiz.de/10013137243
This paper compares various forecasts using panel data with spatial error correlation. The true data generating process is assumed to be a simple error component regression model with spatial remainder disturbances of the autoregressive or moving average type. The best linear unbiased predictor...
Persistent link: https://www.econbiz.de/10013158526