Showing 1 - 10 of 79
In this paper we consider ML estimation for a broad class of parameter-driven models for discrete dependent variables with spatial correlation. Under this class of models, which includes spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent variable is...
Persistent link: https://www.econbiz.de/10009685715
We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian process and non-Gaussian response variables. The class of models under consideration includes specifications for discrete choices,...
Persistent link: https://www.econbiz.de/10015365792
We develop a panel data count model combined with a latent Gaussian spatio-temporal heterogenous state process to analyze monthly severe crimes at the census tract level in Pittsburgh, Pennsylvania. Our data set combines Uniform Crime Reporting data with socio-economic data from the 2000 census....
Persistent link: https://www.econbiz.de/10014135197
We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian process and non-Gaussian response variables. The class of models under consideration includes specifications for discrete choices,...
Persistent link: https://www.econbiz.de/10013036112
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10014058202
Persistent link: https://www.econbiz.de/10009157887
Persistent link: https://www.econbiz.de/10009159117
Persistent link: https://www.econbiz.de/10003355771
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate...
Persistent link: https://www.econbiz.de/10003327173