Showing 1 - 10 of 10
The diminishing extent of Arctic sea ice is a key indicator of climate change as well as an accelerant for future global warming. Since 1978, Arctic sea ice has been measured using satellite-based microwave sensing; however, different measures of Arctic sea ice extent have been made available...
Persistent link: https://www.econbiz.de/10014100420
Stips et al. (2016) use information flows (Liang (2008, 2014)) to establish causality from various forcings to global temperature. We show that the formulas being used hinge on a simplifying assumption that is nearly always rejected by the data. We propose the well-known forecast error variance...
Persistent link: https://www.econbiz.de/10012617291
Persistent link: https://www.econbiz.de/10013274310
Machine learning predictions are typically interpreted as the sum of contributions of predictors. Yet, each out-of-sample prediction can also be expressed as a linear combination of in-sample values of the predicted variable, with weights corresponding to pairwise proximity scores between...
Persistent link: https://www.econbiz.de/10015359141
When it comes to stock returns, any form of predictability can bolster risk-adjusted profitability. We develop a collaborative machine learning algorithm that optimizes portfolio weights so that the resulting synthetic security is maximally predictable. Precisely, we introduce MACE, a...
Persistent link: https://www.econbiz.de/10014348906
Persistent link: https://www.econbiz.de/10014517490
We develop metrics based on Shapley values for interpreting time-series forecasting models, including “black-box” models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics,...
Persistent link: https://www.econbiz.de/10014238433
I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities...
Persistent link: https://www.econbiz.de/10012830408
Persistent link: https://www.econbiz.de/10012299023
We develop metrics based on Shapley values for interpreting time-series forecasting models, including "black-box" models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics,...
Persistent link: https://www.econbiz.de/10013429204