Showing 1 - 10 of 11
Persistent link: https://www.econbiz.de/10008656735
Persistent link: https://www.econbiz.de/10003833937
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Persistent link: https://www.econbiz.de/10003656441
Persistent link: https://www.econbiz.de/10011643235
Persistent link: https://www.econbiz.de/10012166749
An important and widely used class of semiparametric models is formed by the varying-coefficient models. Although the varying coefficients are traditionally assumed to be smooth functions, the varying-coefficient model is considered here with the coefficient functions containing a finite set of...
Persistent link: https://www.econbiz.de/10012960538
Persistent link: https://www.econbiz.de/10013364887
A new class of robust regression estimators is proposed that forms an alternative to traditional robust one-step estimators and that achieves the √n rate of convergence irrespective of the initial estimator under a wide range of distributional assumptions. The proposed reweighted least trimmed...
Persistent link: https://www.econbiz.de/10013137576
To accommodate the inhomogenous character of financial time series over longer time periods, standard parametric models can be extended by allowing their coefficients to vary over time. Focusing on conditional heteroscedasticity models, we discuss various strategies to identify and estimate...
Persistent link: https://www.econbiz.de/10013139138