Showing 1 - 10 of 55
This work deals with multivariate stochastic volatility models, which account for a time-varying variance-covariance structure of the observable variables. We focus on a special class of models recently proposed in the literature and assume that the covariance matrix is a latent variable which...
Persistent link: https://www.econbiz.de/10014220749
Persistent link: https://www.econbiz.de/10003912295
Persistent link: https://www.econbiz.de/10011956868
In high-dimensional vector autoregressive (VAR) models, it is natural to have large number of predictors relative to the number of observations, and a lack of efficiency in estimation and forecasting. In this context, model selection is a difficult issue and standard procedures may often be...
Persistent link: https://www.econbiz.de/10012904383
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10013115354
We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven...
Persistent link: https://www.econbiz.de/10013098263
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10013103126
We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models....
Persistent link: https://www.econbiz.de/10013088788
We propose a multivariate combination approach to prediction based on a distributional state space representation of the weights belonging to a set of Bayesian predictive densities which have been obtained from alternative models. Several specifications of multivariate time-varying weights are...
Persistent link: https://www.econbiz.de/10013113399
This paper proposes a panel Markov-Switching (MS-) VAR model suitable for a multi-country analysis of the business cycle. We study the business cycles fluctuations of a group of countries, analyse the transmission of shocks across cycles and predict the turning points of the country-specific...
Persistent link: https://www.econbiz.de/10015296340