Showing 1 - 10 of 2,281
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10010391531
A new model for time-varying spatial dependencies is introduced. It forms an extension to the popular spatial lag model and can be estimated conveniently by maximum likelihood. The spatial dependence parameter is assumed to follow a generalized autoregressive score (GAS) process. The theoretical...
Persistent link: https://www.econbiz.de/10010491085
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10013049149
Persistent link: https://www.econbiz.de/10011705251
The multivariate analysis of a panel of economic and financial time series with mixed frequencies is a challenging problem. The standard solution is to analyze the mix of monthly and quarterly time series jointly by means of a multivariate dynamic model with a monthly time index: artificial...
Persistent link: https://www.econbiz.de/10010391543
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10010390075
This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the generalized autoregressive score modeling...
Persistent link: https://www.econbiz.de/10012435853
This paper addresses the challenge of inflation forecasting by adopting a thick modeling approach that integrates forecasts from time- and frequency-domain models. Frequency-domain models excel at capturing long-term trends while also accounting for short-term fluctuations. Combining these...
Persistent link: https://www.econbiz.de/10015164409
In this paper we develop a general framework to analyze state space models with timevarying system matrices where time variation is driven by the score of the conditional likelihood. We derive a new filter that allows for the simultaneous estimation of the state vector and of the time-varying...
Persistent link: https://www.econbiz.de/10012156426
In this paper we investigate the behavior of inflation persistence in the United States. To model inflation we estimate an autoregressive GARCH-in-mean model with variable coefficients and we propose a new measure of second-order time varying persistence, which not only distinguishes between...
Persistent link: https://www.econbiz.de/10012843786