Showing 1 - 10 of 14,012
This paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle...
Persistent link: https://www.econbiz.de/10013238628
We establish a framework to study the factor structure in stock variance under a high-frequency and high-dimensional setup. We prove the consistency of conducting principal component analysis on realized variances in estimating the factor structure. Moreover, based on strong empirical evidence,...
Persistent link: https://www.econbiz.de/10014235718
Various parametric volatility models for financial data have been developed to incorporate high-frequency realized volatilities and better capture market dynamics. However, because high-frequency trading data are not available during the close-to-open period, the volatility models often ignore...
Persistent link: https://www.econbiz.de/10013245227
The problems related to the application of multivariate GARCH models to a market with a large number of stocks are solved by restricting the form of the conditional covariance matrix. It contains one component describing the market and a second simple component to account for the remaining...
Persistent link: https://www.econbiz.de/10011543357
The problems related to the application of multivariate GARCH models to a market with a large number of stocks are solved by restricting the form of the conditional covariance matrix. It contains one component describing the market and a second simple component to account for the remaining...
Persistent link: https://www.econbiz.de/10011603217
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with...
Persistent link: https://www.econbiz.de/10013003349
The sample skewness and kurtosis of macroeconomic and financial time series are routinely scrutinized in the early stages of model-building and are often the central topic of studies in economics and finance. Notwithstanding the availability of several robust estimators, most scholars in...
Persistent link: https://www.econbiz.de/10012870892
In this paper, we develop econometric tools to analyze the integrated volatility (IV) of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of...
Persistent link: https://www.econbiz.de/10012860921
This paper develops a statistical theory to estimate an unknown factor structure based on financial high-frequency data …
Persistent link: https://www.econbiz.de/10012937382
Several novel large volatility matrix estimation methods have been developed based on the high-frequency financial data. They often employ the approximate factor model that leads to a low-rank plus sparse structure for the integrated volatility matrix and facilitates estimation of large...
Persistent link: https://www.econbiz.de/10012941598