Showing 1 - 2 of 2
Let X1:n≤X2:n⋯≤Xn:n be the order statistics from some sample, and let Y[1:n],Y[2:n],…,Y[n:n] be the corresponding concomitants. One purpose of this paper is to obtain results that stochastically compare, in various senses, the random vector (Xr:n,Y[r:n]) to the random vector...
Persistent link: https://www.econbiz.de/10011041997
In this paper we study convolution residuals, that is, if <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$X_1,X_2,\ldots ,X_n$$</EquationSource> </InlineEquation> are independent random variables, we study the distributions, and the properties, of the sums <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\sum _{i=1}^lX_i-t$$</EquationSource> </InlineEquation> given that <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\sum _{i=1}^kX_it$$</EquationSource> </InlineEquation>, where <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$t\in \mathbb R $$</EquationSource> </InlineEquation>, and <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$1\le k\le l\le n$$</EquationSource> </InlineEquation>....</equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010995062