Showing 1 - 7 of 7
Persistent link: https://www.econbiz.de/10001723979
It is well known that in a vector autoregressive (VAR) model Granger non-causality is characterized by a set of restrictions on the VAR coefficients. This characterization has been derived under the assumption of non-singularity of the covariance matrix of the innovations. This note shows that...
Persistent link: https://www.econbiz.de/10011297658
Persistent link: https://www.econbiz.de/10010192026
In this paper we propose a test for a set of linear restrictions in a Vector Autoregressive Moving Average (VARMA) model. This test is based on the autoregressive metric, a notion of distance between two univariate ARMA models, M0 and M1, introduced by Piccolo in 1990. In particular, we show...
Persistent link: https://www.econbiz.de/10010479050
A distance between pairs of sets of autoregressive moving average (ARMA) processes is proposed. Its main properties are discussed. The paper also shows how the proposed distance finds application in time series analysis. In particular it can be used to evaluate the distance between portfolios of...
Persistent link: https://www.econbiz.de/10011506519
This paper derives a sufficient condition for noncausality at all forecast horizons (infinitestep noncausality). We propose a test procedure for this sufficient condition. Our procedure presents two main advantages. First, our infinite-step Granger causality analysis is conducted in a more...
Persistent link: https://www.econbiz.de/10012830818
Persistent link: https://www.econbiz.de/10012489251