Showing 1 - 10 of 64
Multi-period-ahead forecasts of returns' variance are used in most areas of applied finance where long horizon measures of risk are necessary. Yet, the major focus in the variance forecasting literature has been on one-period-ahead forecasts. In this paper, we compare several approaches of...
Persistent link: https://www.econbiz.de/10011976983
"We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10002482290
Persistent link: https://www.econbiz.de/10003298564
Persistent link: https://www.econbiz.de/10003509012
We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in...
Persistent link: https://www.econbiz.de/10012755731
Persistent link: https://www.econbiz.de/10010416812
Persistent link: https://www.econbiz.de/10011704952
We propose a new approach to predictive density modeling that allows for MIDAS effects in both the first and second moments of the outcome. Specifically, our modeling approach allows for MIDAS stochastic volatility dynamics, generalizing a large literature focusing on MIDAS effects in the...
Persistent link: https://www.econbiz.de/10013033107
Multiperiod-ahead forecasts of returns’ variance are used in most areas of applied finance where long-horizon measures of risk are necessary. Yet, the major focus in the variance forecasting literature has been on one-period-ahead forecasts. In this review, we compare several approaches of...
Persistent link: https://www.econbiz.de/10014102384
We explore mixed data sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Volatility and related processes are our prime focus, though the regression method has wider applications in macroeconomics and finance, among other...
Persistent link: https://www.econbiz.de/10005476038