Showing 1 - 8 of 8
Persistent link: https://www.econbiz.de/10011389911
An efficient method for Bayesian inference in stochastic volatility models uses a linear state space representation to define a Gibbs sampler in which the volatilities are jointly updated. This method involves the choice of an offset parameter and we illustrate how its choice can have an...
Persistent link: https://www.econbiz.de/10012996507
This paper presents a method for Bayesian nonparametric analysis of the return distribution in a stochastic volatility model. The distribution of the logarithm of the squared return is flexibly modelled using an infinite mixture of Normal distributions. This allows efficient Markov chain Monte...
Persistent link: https://www.econbiz.de/10013133054
A Bayesian semiparametric stochastic volatility model for financial data is developed. This estimates the return distribution from the data allowing for stylized facts such as heavy tails and jumps in prices whilst also allowing for correlation between the returns and changes in volatility, the...
Persistent link: https://www.econbiz.de/10013118198
Persistent link: https://www.econbiz.de/10013157770
Persistent link: https://www.econbiz.de/10009242550
We consider jointly modelling a finite collection of quantiles over time under a Bayesian nonparametric framework. Formal Bayesian inference on quantiles is challenging since we need access to both the quantile function and the likelihood (which is given by the derivative of the inverse quantile...
Persistent link: https://www.econbiz.de/10012900894
Persistent link: https://www.econbiz.de/10012804077