Showing 1 - 4 of 4
Non-parametric approach to financial time series jump estimation, using the L-Estimator, is compared with the parametric approach utilizing a Stochastic-Volatility-Jump-Diffusion (SVJD) model, estimated with MCMC and extended with Particle Filters to estimate the out-sample evolution of its...
Persistent link: https://www.econbiz.de/10012964932
We are comparing two approaches for stochastic volatility and jumps estimation in the EUR/USD time series - the non-parametric power-variation approach using high-frequency returns, and the parametric Bayesian approach (MCMC estimation of SVJD models) using daily returns. We find that both of...
Persistent link: https://www.econbiz.de/10013030080
The aim of this paper is to propose and test a novel PF method called Sequential Gibbs Particle Filter allowing to estimate complex latent state variable models with unknown parameters. The framework is applied to a stochastic volatility model with independent jumps in returns and volatility....
Persistent link: https://www.econbiz.de/10012916933
We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model's parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The...
Persistent link: https://www.econbiz.de/10013121407