Showing 1 - 10 of 5,701
The study determines if information extracted from a big data set that includes limit order book (LOB) and Dow Jones corporate news can help to improve realised volatility forecasting for 23 NASDAQ tickers over the sample from 28 June 2007 to 17 November 2016. The out-of-sample forecasting...
Persistent link: https://www.econbiz.de/10012824203
Persistent link: https://www.econbiz.de/10015053443
Persistent link: https://www.econbiz.de/10015189564
Persistent link: https://www.econbiz.de/10012581422
Persistent link: https://www.econbiz.de/10014462793
Persistent link: https://www.econbiz.de/10014475527
Purpose The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information. Design/methodology/approach This paper uses the nonlinear autoregressive exogenous...
Persistent link: https://www.econbiz.de/10013413441
We use machine learning methods to predict stock return volatility. Our out-of-sample prediction of realised volatility for a large cross-section of US stocks over the sample period from 1992 to 2016 is on average 44.1% against the actual realised volatility of 43.8% with an R2 being as high as...
Persistent link: https://www.econbiz.de/10012800743
Purpose – We use a large and rich data set consisting of over 123,000 single-family houses sold in Switzerland between 2005 and 2017 to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.Design/methodology/approach – We apply six...
Persistent link: https://www.econbiz.de/10011976945
This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word...
Persistent link: https://www.econbiz.de/10012125620