Showing 1 - 10 of 53
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010270808
We introduce a blocking and regularization approach to estimate high-dimensional covariances using high frequency data. Assets are first grouped according to liquidity. Using the multivariate realized kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a), the covariance...
Persistent link: https://www.econbiz.de/10013150590
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
Persistent link: https://www.econbiz.de/10009618510
Persistent link: https://www.econbiz.de/10004570150
Persistent link: https://www.econbiz.de/10001683732
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders' use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ,...
Persistent link: https://www.econbiz.de/10010308581
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting...
Persistent link: https://www.econbiz.de/10010318750
Multiplicative error models (MEM) became a standard tool for modeling conditional durations of intraday transactions, realized volatilities and trading volumes. The parametric estimation of the corresponding multivariate model, the so-called vector MEM (VMEM), requires a specification of the...
Persistent link: https://www.econbiz.de/10010318757