Showing 1 - 10 of 960
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can … outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change … the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that …
Persistent link: https://www.econbiz.de/10011778870
Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this … presence of outliers. Bad and good leverage point outliers are considered. Bias arises in the case of bad leverage points … correct for the effects of outliers following a reweighting strategy in the spirit of the Stahel-Donoho (SD) multivariate …
Persistent link: https://www.econbiz.de/10012547410
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717
This paper investigates the finite sample performance of a comprehensive set of semi- and nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estimation,...
Persistent link: https://www.econbiz.de/10010467808
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012165548
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a...
Persistent link: https://www.econbiz.de/10012060603
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can … outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change … the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that …
Persistent link: https://www.econbiz.de/10012944434
This paper explores semi-monotonicity constraints in the distribution of potential outcomes, first, conditional on an instrument, and second, in terms of the response function. The imposed assumptions are strictly weaker than traditional instrumental variables assumptions and can be gainfully...
Persistent link: https://www.econbiz.de/10010315558
This study investigates the impact of R&D subsidies on R&D investment during the past financial crisis. We conduct a treatment effects analysis and show that R&D subsidies increased R&D spending among subsidized small and medium sized firms in Germany during the crisis years. In the first crisis...
Persistent link: https://www.econbiz.de/10010341825
A growing number of school districts use centralized assignment mechanisms to allocate school seats in a manner that reflects student preferences and school priorities. Many of these assignment schemes use lotteries to ration seats when schools are oversubscribed. The resulting random assignment...
Persistent link: https://www.econbiz.de/10011595186