Showing 1 - 10 of 3,866
We consider a new method to estimate causal effects when a treated unit suffers a shock or an intervention, such as a policy change, but there is not a readily available control group or counterfactual. We propose a two-step approach where in the first stage an artificial counterfactual is...
Persistent link: https://www.econbiz.de/10011523575
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10014052278
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10011372520
In this paper we derive a unit root test against a Panel Logistic Smooth Transition Autoregressive (PLSTAR). The analysis is concentrated on the case where the time dimension is fixed and the cross section dimension tends to infinity. Under the null hypothesis of a unit root, we show that the...
Persistent link: https://www.econbiz.de/10002577852
We consider a new, flexible and easy-to-implement method to estimate the causal effects of an intervention on a single treated unit when a control group is not available and which nests previous proposals in the literature. It is a two-step methodology where in the first stage, a counterfactual...
Persistent link: https://www.econbiz.de/10012935730
The problems of how to evaluate and compare the quality of models formed from panel data are discussed. Using the lessons learnt from the valuation of time series models using post-sample forecasting a variety of tests are suggested using several out-of-sample parts of a panel data set, but...
Persistent link: https://www.econbiz.de/10014072509
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011349180
The linear Gaussian state space model for which the common variance is treated as a stochastic time-varying variable is considered for the modelling of economic time series. The focus of this paper is on the simultaneous estimation of parameters related to the stochastic processes of the mean...
Persistent link: https://www.econbiz.de/10014100716
The inherent assumption with most Monte Carlo techniques is that one may ignore autocorrelations, but doing so compromises the quality of the prediction from the data. Simulations that do not take account of autocorrelation will not properly model reality, as there is significant autocorrelation...
Persistent link: https://www.econbiz.de/10012846361
This chapter presents a unified set of estimation methods for fitting a rich array of models describing dynamic relationships within a longitudinal data setting. The discussion surveys approaches for characterizing the micro dynamics of continuous dependent variables both over time and across...
Persistent link: https://www.econbiz.de/10014024953