Showing 1 - 10 of 21
This papers describes an estimator for a standard state-space model with coefficients generated by a random walk that is statistically superior to the Kalman filter as applied to this particular class of models. Two closely related estimators for the variances are introduced: A maximum...
Persistent link: https://www.econbiz.de/10010267676
This papers describes an estimator for a standard state-space model with coefficients generated by a random walk that is statistically superior to the Kalman filter as applied to this particular class of models. Two closely related estimators for the variances are introduced: A maximum...
Persistent link: https://www.econbiz.de/10010427470
This papers describes an estimator for a standard state-space model with coefficients generated by a random walk that is statistically superior to the Kalman filter as applied to this particular class of models. Two closely related estimators for the variances are introduced: A maximum...
Persistent link: https://www.econbiz.de/10005518249
This papers describes an estimator for a standard state-space model with coefficients generated by a random walk that is statistically superior to the Kalman filter as applied to this particular class of models. Two closely related estimators for the variances are introduced: A maximum...
Persistent link: https://www.econbiz.de/10005566384
This papers describes an estimator for a standard state-space model with coefficients generated by a random walk that is statistically superior to the Kalman filter as applied to this particular class of models. Two closely related estimators for the variances are introduced: A maximum...
Persistent link: https://www.econbiz.de/10010439372
An efficient estimator is constructed for the quadratic covariation or integrated covolatility matrix of a multivariate continuous martingale based on noisy and non-synchronous observations under high-frequency asymptotics. Our approach relies on an asymptotically equivalent continuous-time...
Persistent link: https://www.econbiz.de/10010318777
Measuring dependence in a multivariate time series is tantamount to modelling its dynamic structure in space and time. In the context of a multivariate normally distributed time series, the evolution of the covariance (or correlation) matrix over time describes this dynamic. A wide variety of...
Persistent link: https://www.econbiz.de/10010319194
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10010270704
We consider noisy non-synchronous discrete observations of a continuous semimartingale. Functional stable central limit theorems are established under high-frequency asymptotics in three setups: onedimensional for the spectral estimator of integrated volatility, from two-dimensional asynchronous...
Persistent link: https://www.econbiz.de/10010331125
For a Lévy process X having finite variation on compact sets and finite first moments, u (dx) = xv (dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of u and provide rates of convergence under regularity...
Persistent link: https://www.econbiz.de/10010281557