Showing 1 - 4 of 4
In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with semiparametric copulas to model the...
Persistent link: https://www.econbiz.de/10005043675
In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with semiparametric copulas to model the...
Persistent link: https://www.econbiz.de/10005015255
We propose a new nonparametric estimator for the density function of multivariate bounded data. As frequently observed in practice, the variables may be partially bounded (e.g., nonnegative) or completely bounded (e.g., in the unit interval). In addition, the variables may have a point mass. We...
Persistent link: https://www.econbiz.de/10005065413
In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with semiparametric copulas to model the...
Persistent link: https://www.econbiz.de/10005677346