Showing 1 - 3 of 3
The bootstrap is an increasingly popular method for performing statistical inference. This paper provides the theoretical foundation for using the bootstrap as a valid tool of inference for quasi-maximum likelihood estimators (QMLE). We provide a unified framework for analyzing bootstrapped...
Persistent link: https://www.econbiz.de/10011130679
We provide a unified framework for analyzing bootstrapped extremum estimators of nonlinear dynamic models for heterogeneous dependent stochastic processes. We apply our results to the moving blocks bootstrap of Kunsch (1989) and Liu and Singh (1992) and prove the first order asymptotic validity...
Persistent link: https://www.econbiz.de/10010536460
We address the problem of estimating the autocovariance matrix of a stationary process. Under short range dependence assumptions, convergence rates are established for a gradually tapered version of the sample autocovariance matrix and for its inverse. The proposed estimator is formed by leaving...
Persistent link: https://www.econbiz.de/10010676427