Showing 1 - 4 of 4
Functional data analysis can be challenging when the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data which can be difficult if the data is irregularly distributed. In this paper we present...
Persistent link: https://www.econbiz.de/10010266159
The use of generalized additive models in statistical data analysis suffers from the restriction to few explanatory variables and the problems of selection of smoothing parameters. Generalized additive model boosting circumvents these problems by means of stagewise fitting of weak learners. A...
Persistent link: https://www.econbiz.de/10010266217
Ridge regression is a well established method to shrink regression parameters towards zero, thereby securing existence of estimates. The present paper investigates several approaches to combining ridge regression with boosting techniques. In the direct approach the ridge estimator is used to fit...
Persistent link: https://www.econbiz.de/10010266233
In linear mixed models the influence of covariates is restricted to a strictly parametric form. With the rise of semi- and nonparametric regression also the mixed model has been expanded to allow for additive predictors. The common approach uses the representation of additive models as mixed...
Persistent link: https://www.econbiz.de/10010266248