Showing 1 - 7 of 7
A profile = (x1, ..., xk), of length k, in a finite connected graph G is a sequence of vertices of G, with repetitions allowed. A median x of is a vertex for which the sum of the distances from x to the vertices in the profile is minimum. The median function finds the set of all medians of a...
Persistent link: https://www.econbiz.de/10010837743
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on X. In this...
Persistent link: https://www.econbiz.de/10010837892
__Abstract__ A median (antimedian) of a profile of vertices on a graph $G$ is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians) of a...
Persistent link: https://www.econbiz.de/10011185629
The Majority Strategy for finding medians of a set of clients on a graph can be relaxed in the following way: if we are at v, then we move to a neighbor w if there are at least as many clients closer to w than to v (thus ignoring the clients at equal distance from v and w). The graphs on which...
Persistent link: https://www.econbiz.de/10010731685
The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was...
Persistent link: https://www.econbiz.de/10010734036
An antimedian of a profile $\\pi = (x_1, x_2, \\ldots , x_k)$ of vertices of a graph $G$ is a vertex maximizing the sum of the distances to the elements of the profile. The antimedian function is defined on the set of all profiles on $G$ and has as output the set of antimedians of a profile. It...
Persistent link: https://www.econbiz.de/10011149257
A mean of a sequence π = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(π) = { x | x is a mean of π } is called the mean function on...
Persistent link: https://www.econbiz.de/10008584836