Showing 1 - 10 of 24
In this paper, we develop new subgradient methods for solving nonsmooth convex optimization problems. These methods are the first ones, for which the whole sequence of test points is endowed with the worst-case performance guarantees. The new methods are derived from a relaxed estimating...
Persistent link: https://www.econbiz.de/10010927696
In this paper we suggest a new framework for constructing mathematical models of market activity. Contrary to the majority of the classical economical models (e.g. Arrow- Debreu, Walras, etc.), we get a characterization of general equilibrium of the market as a saddle point in a convex-concave...
Persistent link: https://www.econbiz.de/10010752813
In this paper we propose a new interior-point method, which is based on an extension of the ideas of self-scaled optimization to the general cases. We suggest using the primal correction process to find a scaling point. This point is used to compute a strictly feasible primal-dual pair by simple...
Persistent link: https://www.econbiz.de/10005042857
In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for non-smooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured non-smooth optimization problems, which ensures a...
Persistent link: https://www.econbiz.de/10005042929
In many applications it is possible to justify a reasonable bound for possible variation of subgradients of objective function rather than for their uniform magnitude. In this paper we develop a new class of efficient primal-dual subgradient schemes for such problem classes.
Persistent link: https://www.econbiz.de/10005043014
We consider the single-facility location problem with mixed norms, i.e. the problem of minimizing the sum of the distances from a point to a set of fixed points in R, where each distance can be measured according to a different p-norm.We show how this problem can be expressed into a structured...
Persistent link: https://www.econbiz.de/10005043109
In this paper we present a new approach to constructing schemes for unconstrained convex minimization, which compute approximate solutions with a certain relative accuracy. This approach is based on a special conic model of the unconstrained minimization problem. Using a structural model of the...
Persistent link: https://www.econbiz.de/10005043116
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem....
Persistent link: https://www.econbiz.de/10005043237
In this paper we derive effciency estimates of the regularized Newton's method as applied to constrained convex minimization problems and to variational inequalities. We study a one- step Newton's method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3...
Persistent link: https://www.econbiz.de/10005043350
We propose two simple upper bounds for the joint spectral radius of sets of nonnegative matrices. These bounds, the joint column radius and the joint row radius, can be computed in polynomial time as solutions of convex optimization problems. We show that for general matrices these bounds are...
Persistent link: https://www.econbiz.de/10005043611