Showing 1 - 10 of 24
In this paper we propose new efficient gradient schemes for two non-trivial classes of linear programming problems. These schemes are designed to compute approximate solutions withrelative accuracy . We prove that the upper complexity bound for both ln schemes is O( n m ln n) iterations of a...
Persistent link: https://www.econbiz.de/10005065280
In this paper we propose an accelerated version of the cubic regularization of Newton's method [6]. The original version, used for minimizing a convex function with Lipschitz-continuous Hessian, guarantees a global rate of convergence of order O(1/k exp.2), where k is the iteration counter. Our...
Persistent link: https://www.econbiz.de/10005065351
In this paper we develop a new primal-dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of...
Persistent link: https://www.econbiz.de/10005065359
In this paper we propose a new interior-point method, which is based on an extension of the ideas of self-scaled optimization to the general cases. We suggest using the primal correction process to find a scaling point. This point is used to compute a strictly feasible primal-dual pair by simple...
Persistent link: https://www.econbiz.de/10005042857
In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for non-smooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured non-smooth optimization problems, which ensures a...
Persistent link: https://www.econbiz.de/10005042929
In many applications it is possible to justify a reasonable bound for possible variation of subgradients of objective function rather than for their uniform magnitude. In this paper we develop a new class of efficient primal-dual subgradient schemes for such problem classes.
Persistent link: https://www.econbiz.de/10005043014
We consider the single-facility location problem with mixed norms, i.e. the problem of minimizing the sum of the distances from a point to a set of fixed points in R, where each distance can be measured according to a different p-norm.We show how this problem can be expressed into a structured...
Persistent link: https://www.econbiz.de/10005043109
In this paper we present a new approach to constructing schemes for unconstrained convex minimization, which compute approximate solutions with a certain relative accuracy. This approach is based on a special conic model of the unconstrained minimization problem. Using a structural model of the...
Persistent link: https://www.econbiz.de/10005043116
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem....
Persistent link: https://www.econbiz.de/10005043237
In this paper we derive effciency estimates of the regularized Newton's method as applied to constrained convex minimization problems and to variational inequalities. We study a one- step Newton's method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3...
Persistent link: https://www.econbiz.de/10005043350