Showing 1 - 10 of 14
Persistent link: https://www.econbiz.de/10011992624
Persistent link: https://www.econbiz.de/10012215160
In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for non-smooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured non-smooth optimization problems, which ensures a...
Persistent link: https://www.econbiz.de/10005042929
In this paper we extend the smoothing technique [7], [9] onto the problems of Semidefinite Optimization. For that, we develop a simple framework for estimating a Lipschitz constant for the gradient of some symmetric functions of eigenvalues of symmetric matrices. Using this technique, we can...
Persistent link: https://www.econbiz.de/10005008172
In this paper we study the Riemannian length of the primal central path computed with respect to the local metric defined by a self-concordant function. We show that despite to some examples, in many important situations the length of this path is quite close to the length of geodesic curves. We...
Persistent link: https://www.econbiz.de/10005008264
Optimization problems over several cones of non-negative polynomials are described; we focus on linear constraints on the coefficients that represent interpolation constraints. For these problems, the complexity of solving the dual formulation is shown to be almost independent of the number of...
Persistent link: https://www.econbiz.de/10005008394
Problems dealing with the design and the operations of gas transmission networks are challenging. The difficulty mainly arises from the simultaneous modeling of gas transmission laws and of the investment costs. The combination of the two yields a non- linear non-convex optimization problem. To...
Persistent link: https://www.econbiz.de/10008550235
In this paper, we prove the complexity bounds for methods of Convex Optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most n times more iterations than...
Persistent link: https://www.econbiz.de/10009002079
In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can...
Persistent link: https://www.econbiz.de/10008642227
In this paper, we present new methods for black-box convex minimization. They do not need to know in advance the actual level of smoothness of the objective function. The only essential input parameter is the required accuracy of the solution. At the same time, for each particular problem class...
Persistent link: https://www.econbiz.de/10010695711