Showing 1 - 5 of 5
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10010270736
Let a high-dimensional random vector X can be represented as a sum of two components - a signal S , which belongs to some low-dimensional subspace S, and a noise component N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component...
Persistent link: https://www.econbiz.de/10010281568
This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision...
Persistent link: https://www.econbiz.de/10005233335
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10008577417
Let a high-dimensional random vector X can be represented as a sum of two components - a signal S, which belongs to some low-dimensional subspace S, and a noise component N. This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component...
Persistent link: https://www.econbiz.de/10008682878