Showing 1 - 5 of 5
A Kalman filter for application to stationary or non-stationary time series is proposed. A major feature is a new initialisation method to accommodate non-stationary time series. The filter works on time series with missing values at any point of time including the initialisation phase. It can...
Persistent link: https://www.econbiz.de/10004966126
A Kalman filter for application to stationary or non-stationary time series is proposed. A major feature is a new initialisation method to accommodate non-stationary time series. The filter works on time series with missing values at any point of time including the initialisation phase. It can...
Persistent link: https://www.econbiz.de/10005246258
This paper has a focus on non-stationary time series formed from small non-negative integer values which may contain many zeros and may be over-dispersed. It describes a study undertaken to compare various suitable adaptations of the simple exponential smoothing method of forecasting on a...
Persistent link: https://www.econbiz.de/10005427641
Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a...
Persistent link: https://www.econbiz.de/10004995367
A Kalman filter, suitable for application to a stationary or a non-stationary time series, is proposed. It works on time series with missing values. It can be used on seasonal time series where the associated state space model may not satisfy the traditional observability condition. A new...
Persistent link: https://www.econbiz.de/10005581117