Showing 1 - 10 of 25
In this paper we propose a flexible model to capture nonlinearities and long-range dependence in time series dynamics. The new model is a multiple regime smooth transition extension of the Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of the...
Persistent link: https://www.econbiz.de/10005744743
Persistent link: https://www.econbiz.de/10005222461
Does volatility reflect a continuous reaction to past shocks or changes in the markets induce shifts in the volatility dynamics? In this paper, we provide empirical evidence that cumulated price variations convey meaningful information about multiple regimes in the realized volatility of stocks,...
Persistent link: https://www.econbiz.de/10005534078
In this paper we consider modeling and forecasting of large realized covariance matrices by penalized vector autoregressive models. We propose using Lasso-type estimators to reduce the dimensionality to a manageable one and provide strong theoretical performance guarantees on the forecast...
Persistent link: https://www.econbiz.de/10010491375
Persistent link: https://www.econbiz.de/10011807281
Does volatility reflect a continuous reaction to past shocks or changes in the markets induce shifts in the volatility dynamics? In this paper, we provide empirical evidence that cumulated price variations convey meaningful information about multiple regimes in the realized volatility of stocks,...
Persistent link: https://www.econbiz.de/10011807356
In this paper we propose a flexible model to capture nonlinearities and long-range dependence in time series dynamics. The new model is a multiple regime smooth transition extension of the Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of the...
Persistent link: https://www.econbiz.de/10011807368
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other...
Persistent link: https://www.econbiz.de/10011807460
In this paper we survey the most recent advances in supervised machine learning and highdimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The...
Persistent link: https://www.econbiz.de/10012817069
It is widely known that Google Trends has become one of the most popular free tools used by forecasters both in academics and in the private and public sectors. There are many papers, from several different fields, concluding that Google Trends improve forecasts' accuracy. However, what seems to...
Persistent link: https://www.econbiz.de/10012817073