Showing 1 - 10 of 30
We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each financial variable in the index to evolve over time. Furthermore, we develop methods for...
Persistent link: https://www.econbiz.de/10011108998
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10011112017
We use factor augmented vector autoregressive models with time-varying coe¢ cients to construct a …nancial conditions index. The time-variation in the parameters allows for the weights attached to each …nancial variable in the index to evolve over time. Furthermore, we develop methods for...
Persistent link: https://www.econbiz.de/10011019232
This paper considers how an investor in foreign exchange markets might exploit predictive information in macroeconomic fundamentals by allowing for switching between multivariate time series regression models. These models are chosen to reflect a wide array of established empirical and...
Persistent link: https://www.econbiz.de/10011892028
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10009652479
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10010540685
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10010552428
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the...
Persistent link: https://www.econbiz.de/10010610466
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample...
Persistent link: https://www.econbiz.de/10009002073
We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each .financial variable in the index to evolve over time. Furthermore, we develop methods for...
Persistent link: https://www.econbiz.de/10010678559