Showing 1 - 10 of 15
This paper has a focus on non-stationary time series formed from small non-negative integer values which may contain many zeros and may be over-dispersed. It describes a study undertaken to compare various suitable adaptations of the simple exponential smoothing method of forecasting on a...
Persistent link: https://www.econbiz.de/10005427641
In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a...
Persistent link: https://www.econbiz.de/10005427642
This paper revisits the least squares estimator of the linear regression with a structural break. We view the model as an approximation to the true data generating process whose exact nature is unknown but perhaps changing over time either continuously or with some jumps. This view is widely...
Persistent link: https://www.econbiz.de/10010860411
This paper shows that in the presence of model mis-specification, the conventional inference procedures for structural-break models are invalid. In doing so, we establish new distribution theory for structural break models under the relaxed assumption that our structural break model is the best...
Persistent link: https://www.econbiz.de/10010860415
Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a...
Persistent link: https://www.econbiz.de/10004995367
Intermittent demand commonly occurs with inventory data, with many time periods having no demand and small demand in the other periods. Croston's method is a widely used procedure for intermittent demand forecasting. However, it is an ad hoc method with no properly formulated underlying...
Persistent link: https://www.econbiz.de/10005087603
A Kalman filter, suitable for application to a stationary or a non-stationary time series, is proposed. It works on time series with missing values. It can be used on seasonal time series where the associated state space model may not satisfy the traditional observability condition. A new...
Persistent link: https://www.econbiz.de/10005581117
When people forecast, they often use analogies but in an unstructured manner. We propose a structured judgmental procedure that involves asking experts to list as many analogies as they can, rate how similar the analogies are to the target situation, and match the outcomes of the analogies with...
Persistent link: https://www.econbiz.de/10005581149
The basic ideals underlying the Kalman filter are outlined in this paper without direct recourse to the complex formulae normally associated with this method. The novel feature of the paper is its reliance on a new algebraic system based on the first two moments of the multivariate normal...
Persistent link: https://www.econbiz.de/10005581165
In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by...
Persistent link: https://www.econbiz.de/10005125279