Showing 1 - 10 of 489
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196
Persistent link: https://www.econbiz.de/10012022811
Persistent link: https://www.econbiz.de/10015339752
We propose a new approach to model high and low frequency components of equity correlations. Our framework combines a factor asset pricing structure with other specifications capturing dynamic properties of volatilities and covariances between a single common factor and idiosyncratic returns....
Persistent link: https://www.econbiz.de/10004974501
Persistent link: https://www.econbiz.de/10011959996
Persistent link: https://www.econbiz.de/10014316039
This paper contributes to the productivity literature by using results from firm-level productivity studies to improve forecasts of macro-level productivity growth. The paper employs current research methods on estimating firm-level productivity to build times-series components that capture the...
Persistent link: https://www.econbiz.de/10011378362
In recent years, an impressive body or research on predictive accuracy testing and model comparison has been published in the econometrics discipline. Key contributions to this literature include the paper by Diebold and Mariano (DM: 1995) that sets the groundwork for much of the subsequent work...
Persistent link: https://www.econbiz.de/10009766717
Time series is a collection of observations made at regular time intervals and its analysis refers to problems in correlations among successive observations. Time series analysis is applied in all areas of statistics but some of the most important include macroeconomic and financial time series....
Persistent link: https://www.econbiz.de/10012178433
This paper examines the forecast accuracy of cointegrated vector autoregressive models when confronted with extreme observations at the end of the sample period. It focuses on comparing two outlier correction methods, additive outliers and innovational outliers, within a forecasting framework...
Persistent link: https://www.econbiz.de/10015182571