Showing 1 - 10 of 14
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. By combining existing numerical and Monte Carlo integration methods, we obtain a general and efficient likelihood evaluation method for this class of models. Our approach is based on the idea that only...
Persistent link: https://www.econbiz.de/10008873337
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10010325813
We introduce a dynamic Skellam model that measures stochastic volatility from high-frequency tick-by-tick discrete stock price changes. The likelihood function for our model is analytically intractable and requires Monte Carlo integration methods for its numerical evaluation. The proposed...
Persistent link: https://www.econbiz.de/10011403534
Publication in the 'Journal of Business & Economic Statistics' forthcoming.<A> We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and...</a>
Persistent link: https://www.econbiz.de/10011255569
Highly non-elliptical posterior distributions may occur in several econometric models, in particular, when the likelihood information is allowed to dominate and data information is weak. We explain the issue of highly non-elliptical posteriors in a model for the effect of education on income...
Persistent link: https://www.econbiz.de/10005504938
Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior distributions. We focus on the situation where one makes use of importance sampling or the independence chain...
Persistent link: https://www.econbiz.de/10005016276
Recent models for credit risk management make use of Hidden Markov Models (HMMs). The HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially mis-specified. In this paper, we focus on...
Persistent link: https://www.econbiz.de/10005136969
We model 1981–2002 annual US default frequencies for a panel of firms in different rating and age classes. The data is decomposed into a systematic and firm-specific risk component, where the systematic component reflects the general economic conditions and default climate. We have to cope...
Persistent link: https://www.econbiz.de/10005137260
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10005137315
We consider a queue fed by a large number, say n, of on-off sources with generally distributed on- and off-times. The queueing resources are scaled by n: the buffer is B=nb and link rate is C=nc. The model is versatile: it allows us to model both long range dependent traffic (by using heavy-...
Persistent link: https://www.econbiz.de/10005281775