Showing 1 - 10 of 30
Highly non-elliptical posterior distributions may occur in several econometric models, in particular, when the likelihood information is allowed to dominate and data information is weak. We explain the issue of highly non-elliptical posteriors in a model for the effect of education on income...
Persistent link: https://www.econbiz.de/10010325728
This discussion paper led to a publication in 'Computational Statistics & Data Analysis' 56(11), pp. 3398-1414.Important choices for efficient and accurate evaluation of marginal likelihoods by means of Monte Carlo simulation methods are studied for the case of highly non-elliptical posterior...
Persistent link: https://www.econbiz.de/10010325939
The main objective of this thesis is to develop novel Monte Carlo techniques with emphasis on various applications in finance and economics, particularly in the fields of risk management and asset returns modeling. New stochastic algorithms are developed for rare-event probability estimation,...
Persistent link: https://www.econbiz.de/10009448656
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012114810
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012661544
Highly non-elliptical posterior distributions may occur in several econometric models, in particular, when the likelihood information is allowed to dominate and data information is weak. We explain the issue of highly non-elliptical posteriors in a model for the effect of education on income...
Persistent link: https://www.econbiz.de/10005504938
Adaptive radial-based direction sampling (ARDS) algorithms are specified for Bayesian analysis of models with nonelliptical, possibly, multimodal target distributions. A key step is a radial-based transformation to directions and distances. After the transformations a Metropolis-Hastings method...
Persistent link: https://www.econbiz.de/10010731663
Likelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using...
Persistent link: https://www.econbiz.de/10010731672
The performance of Monte Carlo integration methods like importance sampling or Markov Chain Monte Carlo procedures greatly depends on the choice of the importance or candidate density. Usually, such a density has to be "close" to the target density in order to yield numerically accurate results...
Persistent link: https://www.econbiz.de/10010731729
In this short paper we summarize the computational steps of Adaptive Radial-Based Direction Sampling (ARDS), which can be used for Bayesian analysis of ill behaved target densities. We consider one simulation experiment in order to illustrate the good performance of ARDS relative to the...
Persistent link: https://www.econbiz.de/10010731736