Showing 1 - 10 of 78
We introduce a new method to robustifying inference that can be applied in any situation where a parametric likelihood is available. The key feature is that data from the postulated parametric models are assumed to be measured with error where the measurement error distribution is chosen to...
Persistent link: https://www.econbiz.de/10009431189
Li, Fang & Tian (1994) assert that special quasi-linear means should be preferred to the simple arithmetic mean for robustness properties. The strategy that is used to show robustness is completely detached from the concepts wellknown from the theory of robust statistics. Robustness of...
Persistent link: https://www.econbiz.de/10010308298
In this work, we introduce a smoothed influence function that constitute a theoretical tool for studying the outliers robustness properties of a large class of nonparametric estimators. With this tool, we first show the nonrobustness of the Nadaraya-Watson estimator of regression. Then we show...
Persistent link: https://www.econbiz.de/10010310591
Some methods from statistical machine learning and from robust statistics have two drawbacks. Firstly, they are computer-intensive such that they can hardly be used for massive data sets, say with millions of data points. Secondly, robust and non-parametric confidence intervals for the...
Persistent link: https://www.econbiz.de/10010296722
The paper brings together methods from two disciplines: machine learning theory and robust statistics. Robustness properties of machine learning methods based on convex risk minimization are investigated for the problem of pattern recognition. Assumptions are given for the existence of the...
Persistent link: https://www.econbiz.de/10010306271
We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by...
Persistent link: https://www.econbiz.de/10011941466
Estimation or mis-specification errors in the portfolio loss distribution can have a considerable impact on risk measures. This paper investigates the sensitivity of tail-related risk measures including the Value-at-Risk, expected shortfall and the expectile-quantile transformation level in an...
Persistent link: https://www.econbiz.de/10012433159
The aim of this paper is to investigate the robustness properties of likelihood inference with respect to rounding effects. Attention is focused on exponential families and on inference about a scalar parameter of interest, also in the presence of nuisance parameters. A summary value of the...
Persistent link: https://www.econbiz.de/10005492101
Persistent link: https://www.econbiz.de/10005376352
Persistent link: https://www.econbiz.de/10005390622